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1. INTRODUCTION
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Mechanisms and static stress analyses have long been the major considerations in the

design of many articulated structures or adaptive structures in the past. However, high-

performance requirements on these structures have added the dynamics considerations

as a new added design criterion in recent years. This is especially true in the design of

adaptive or deployable space structures that involve the combined phenomena of the

orbital mechanics, structural configuration changes and flexible vibrations in a coupled

manner. Hence, little attention has been given to, in the design of reconfigurable flexible

space structures, the influence of the accompanying dynamics during the maneuvering

as an integral part of the design requirements.

The adaptations of human bodies, animals and bacteria to spatial dynamical motions

have been previously studied[I-3]. Recently, several investigators developed the so-

called angular momentum preserving rotational maneuvering control algorithms and

applied them to robotics and spacecraft attitude controls[4-6]. As a result, the intrinsic

adaptations of the momentum conservation (violation for that matter) laws by spring

board divers, ice skaters as well as gymnasts are well understood, which have been

subsequently utilized for the design of space robotics maneuvering and space rendezvous

scenarios. These studies have dealt mostly with rigid bodies linked by frictionless joints

and focused on the development of various control algorithms for nonholonomic rigid

dynamical system.

The use of a helical bi-morph actuator/sensor concept[7] by mimicking the change of

helical waveform in bacterial flagella is perhaps the first application of bacterial motions

(living species) to longitudinal deployment of space structures. However, no dynamical

considerations were analyzed to explain the waveform change mechanisms[3, 7]. The

objective of the present paper is to review various deployment concepts from the dy-

namics point of view and introduce the dynamical considerations from the outset as part

of design considerations. Specifically, the impact of the incorporation of the combined

static mechanisms and dynamic design considerations on the deployment performance

during the reconfiguration stage is studied in terms of improved controllability, maneu-

vering duration and joint singularity index. It is shown that intermediate configurations

during articulations play an important role for improved joint mechanisms design and

overall structural deployability.
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2. EXAMPLES OF ADAPTIVE STRUCTURES

2.1 Bacterial Flagella

In studying the chemotaxis of bacteria such as Salmonella, scientists discovered that

their motions are intertwined with smooth swimming interrupted by short periods of

tumbling[3]. In particular, the change in waveforms do not follow the intuitive way,
vz., from one normal wave form to the adjacent discrete wave state. Instead, the

transition of the waveform jump from one wave sometimes to its half-length wave.

Calladine[3] conjectured that the intermittent existence of bi-stable subunits along

the helical flagella structure are responsible for the formation of partly stable curly

right-handed helices. It is these bi-stable subunits that cause jumps in the waveform

formation.
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Courtesy: Caladlne[3]

Courtesy: Miura et al[7]

Fig. 1 Possible Waveforms of Flagella of Salmonella

From the mechanical deployment perspectives, the large motions due to the jumps in

waveform change in bacterial flagella pose the following questions: 1) how can such

large motions be possible what are the sources of the torques that make such large



motions possible?;2) are thosemotions createdby minimizing the energyrequirements
or by triggering unstable motion paths so that the energy need remains minimal?;
3) can the large motion phenomenonbe explained solely by quasi-static equilibrium
considerationsor be explainedonly by the dynamical considerations?

Experiments aswell asanalytical studies[3]sofar identified twelve polymorphic helical
forms with a tubular chainsof 20 nanometerin diameter as shownin Fig. 1.

2.2 Reconfigurable Truss Beams

Figure 2 illustrates three representative reconfigurable truss beams. The sequentially

deployable maneuvering tetrahedral beam is shown in Fig. 2a and can only be deployed

sequentially, hence can't simulate the jumps in waveform of the bacterial flagella.

Batten ACtuated(345) Variable
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Fig. 2 Various Reconfigurable Truss Beams

By inserting actuator-encorder pairs into some of the truss members as shown in the

variable geometry truss (Fig. 2b), it is possible to shape the beam as desired. The

batten actuated beam as shown in Fig. 2c is perhaps the simplest reconfigurable truss.

In both the last two cases, the actuators may be viewed as bi-stable subunits which,

unlike for the case of tumbling motions in flagella case, do require control forces.



3. NONHOLONOMICALLY CONTROLLED RECONFIGURABLE STRUCTURES

The equations of motion for nonholonomically controlled reconfigurable structures can

be written as

15= f(t)- S(q) + Bu + CA (1)

p = M_I + D(q)

with the constraints:
0_K

CK(q) =0 C=_

Oq (2)

•N(q)=O B= 0--_-

In the above equations, p is the generalized momenta, f is the applied force, s as the

internal force, u and A are the nonholonomic and kinematic contraint forces, M is the

generalized inertia matrix, D is the damping operator, and _K(q) and _/¢(q) are system
kinematic and nonholonomic constraint equations. It should be noted that both u and

A can be augmented with active control forces, when necessary.

Figure 3 illustrates a design example that involves the sizing of the double moemnt

g_yros[ll] for effecting the maneuvering as well as the necessary vibration control. The

moment gyros can in turn be made of from micro to mini sizes [12], depending upon

the torque requirements. In this particular example, the task is to shape the artic-

ulated straight beam to form an hexagonal polygonal structure in space or can be

shaped to form a helix if desired. Therefore, the role of gyros is to perform triple tasks

concurrently: maneuvering, vibration control, and if necessary bi-stable units for easy

articulation.

Micro Gimbiled Gyro
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Control Moment Gyro
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Fig. 3 Articulation of Beam-Like Structure via Control Moment Gyros
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It should be mentioned that, for three rigidly linked planar maneuvering that con-

serves the angular momentum, the problem has been analyzed in [6]. It is for flexible

cases the solution can be complicated. These and solutions of other related problems

will be reported at the conference.
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